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Abstract: Insulin has been the gold standard therapy for diabetes since its
discovery and commercial availability. It remains the only pharmacologic
therapy for type 1 diabetes (T1D), an autoimmune disease in which
autoreactive T cells specifically kill the insulin-producing beta cells.
Nevertheless, not even molecularly produced insulin administered four or
five times per day can provide a physiologic regulation able to prevent the
complications that account for the morbidity and mortality of diabetic
patients. Also, insulin does not eliminate the T1D hallmark: beta-cell-
specific autoimmunity. In other words, insulin is not a ‘cure’. A successful
cure must meet the following criteria: (i) it must either replace or maintain
the functional integrity of the natural, insulin-producing tissue, the
endocrine islets of Langerhans’ and, more specifically, the insulin-
producing beta cells; (ii) it must, at least, control the autoimmunity or
eliminate it altogether; and (iii) it must be easy to apply to a large number
of patients. Criterion 1 has been partially realized by allogeneic islet
transplantation. Criterion 2 has been partially realized using monoclonal
antibodies specific for T-cell surface proteins. Criterion 3 has yet to be
realized, given that most of the novel therapies are currently quasi-
patient-specific. Herein, we outline the current status of non-insulin-based
therapies for T1D, with a focus on cell-based immunomodulation which
we propose can achieve all three criteria illustrated above.
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Type 1 diabetes mellitus: nature of the
autoimmunity

Type 1 diabetes (T1D) is an autoimmune disorder that
culminates in uncontrollable hyperglycemia because of
the destruction of the insulin-producing beta cells of
the pancreatic islets of Langerhans. The major effectors
of beta-cell destruction are T cells reactive to beta-
cell-specific antigens. A strong genetic predisposition is
a conditio sine qua non of T1D and a large body of studies
support that key genetic susceptibility loci affect the
genesis, function and survival of immune cell subsets
including T cells (effectors and putative regulatory T
cells) and dendritic cells (DC) (1-4).

To understand the critical role played by the genetic
predisposition in T1D, it is necessary to consider the
processes that shape the immune system. A randomized
pool of immature cells continuously generated in the
bone marrow (BM) eventually travel across the thymus.
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Once in the thymus, these immature cells, individually
expressing unique receptors, undergo positive and nega-
tive selection through receptor interaction with frag-
ments of proteins present in our bodies (self-peptides)
presented by antigen-presenting cells (APC) once prop-
erly inserted in the peptide-binding groove of major histo-
compatibility complex (MHC) molecules. Indeed, the
epithelial thymus is now known to express a wide array
of self-antigens including insulin, thyroperoxidase,
thyroglobulin, and myelin basic protein, all of which
are normally produced by cells targeted in a number of
autoimmune disorders including T1D, Hashimoto’s
thyroiditis and multiple sclerosis. Human leukocyte
antigens (HLA), the human MHC molecules, anchored
in the cell membrane of thymic epithelial and other
APC display HLA/self-peptide complexes for T-cell
receptor (TCR) interaction. A cell that interacts
strongly with the HLA/self-peptide complex dies in



the thymus and is thus eliminated, i.e., negatively
selected. On the contrary, cells that interact poorly with
the complex do not proliferate sufficiently or become
unable to function (i.e., anergic) and are eventually lost.
The cells between these two extremes proliferate
modestly, survive (positive selection), and emerge from
the thymus to circulate in the periphery. Once in the
periphery, the cells that matured in the thymus (T cells)
can be engaged by circulating APC. DC are extremely
powerful APC that collect foreign or ‘ignored’ (i.e., not
previously exposed to the immune system) material, to
present it as ‘new’ antigens to T cells through their HLA
molecule. These T cells interact with the new antigens
more strongly than with self-peptides, which enabled
their positive selection and consequently the establish-
ment of a T-cell-based protective immune response (5—
7). The epitope spreading phenomenon (i.e., the
expansion of newly recognized antigens) (8) observed
in the islet inflammation is due to both islet-reactive
T cells that were generated in the thymus early in
ontogeny along with the generation and survival of
T cells activated in the periphery by these new antigens.
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The pathologic vicious circle of continuous presenta-
tion of old and new antigens, collected by the DC from
the newly destroyed beta cells, to naive T cells in the
pancreatic lymph nodes that eventually go back to the
pancreas to kill other beta cells, is illustrated in Fig. 1.

The genetic predisposing background of autoimmune
diseases, like T1D, is mainly constituted of specific HLA
alleles (9-12). Allelic forms of the HLA-DQ molecule
that lack a charged amino acid at position 57 of its beta
chain were shown to be strongly correlated with the
development of T1D. Conversely, resistance to the
disease was found to be associated with the inheritance
of an HLA-DQ allelic form with an aspartic residue at
the same position (Asp57). The importance of this amino
acid change has to do with the physical structure of the
non-Asp57 alleles constituting class 11 molecules with
a suboptimal functional groove. In fact, the molecular
interactions that normally drive positive and negative
selection are altered by the disease-associated HLA
molecules so that even strongly self-reactive T-cell clones
are allowed to escape to the periphery. HLA structural
variations between alleles with Asp 57 and those lacking
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Fig. 1. The autoimmune vicious circle favoring the anti-beta-cell epitope spreading. Activated by an environmental stimulus, the autoreactive
T cells that escaped thymic censorship, leave the lymph nodes and move into the tissues where eventually they find the self-peptide with which
they were originally set up to react. Once the first beta cells are damaged, dendritic cells (DC) come to clean up the scene. Debris from dead
cells are brought back to the lymph nodes in which even cytoplasmic markers — thus far not exposed to the immune system — are presented by
DC to naive T cells. T cells that were so far ‘ignorant’ of their existence, recognize these self-antigens as foreign and react against them once
back into the islet of Langerhans, killing new beta cells. This constitutes a vicious circle that does not allow the recovery of the insulin-secreting
cells, even when the physiologic homeostasis process tries to substitute the lost cells with new cells. APC, antigen-presenting cells.
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a charged amino acid at this position (non-Asp57)
provide the foundation for HLA-associated diabetic
susceptibility and resistance. Susceptibility is closely
related to an impaired negative selection of self-reactive
T cells. Another not necessarily mutually exclusive con-
sequence is that T-regulatory cells are not as effectively
selected and, in their reduced abundance, peripheral
reactions to self-peptides are not held in check as well as
would occur in a normal immune system.

The importance of the MHC alleles and the thymic
antigen-presenting environment was confirmed in stud-
ies in which autoimmunity was prevented in non-obese
diabetic (NOD) mice by transplanting BM cells derived
from diabetes-resistant (Asp57) strains (13, 14). Instead
of relying on allogeneic BM transplantation, Tian et al.
(15) successfully prevented diabetes by reconstituting
sublethally irradiated non-Asp57 NOD mice with their
own BM genetically engineered ex vivo to express
a resistance (Asp57) MHC class II molecule. The re-
constituted mice, carrying BM-derived cells that coex-
pressed both their own diabetogenic (non-Asp57) and
the transfected Asp57 beta chain, were diabetes-free.
The thymus, repopulated by the engineered BM cells,
which differentiated into APC, had restored negative
selection and consequently the ability to delete T cells
potentially autoreactive to pancreatic beta cells. Autor-
eactive T-cell clones, which were not found in the treated
animals, were eliminated because of the stronger affinity
of their TCR for the self-peptide now properly presented
by the newly expressed MHC molecule.

Immediately, it became clear to us that once this
approach had obtained autoimmunity abrogation also
in already diabetic individuals, it could possibly
facilitate the recovery of autologous insulin produc-
tion. Safe induction of an autoimmunity-free status
might become a new promising therapy for T1D.

We are working on this aim using a modification of
Tian’s approach that may be transferable to clinical
trials in the near future (16, 17). A reason to believe it
comes from the study of Voltarelli et al. in which
autologous transplantation of hematopoietic stem cell-
enriched BM was used to treat T1D patients (18). The
risk of exposing the patient to a non-myeloablative yet
quite powerful preconditioning was not totally justi-
fied, however, by the results obtained. The effects were
limited to simple postponement of diabetes recurrence,
i.e., just delayed by the time necessary for the trans-
planted BM to reorganize itself and to reestablish all of
its immunocompetent cell subpopulations. The auto-
logous BM did not change the patient’s genetic
characteristics under which tolerance for the insulin-
producing beta cells was not achieved in the first place;
in this context, autoimmunity easily recurred. Our
approach should safely change the patient’s diabeto-
genic characteristics (16, 17).

New types of intervention are becoming available
everyday, which may allow a successful ‘take’ of the
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transplanted BM without the need for a deleterious
type of preconditioning (19). Furthermore, new gene
therapy approaches that do not involve vector integra-
tion at potentially transformative gene loci are contin-
uously discovered (20-22). A protocol that takes into
account the choice of the gene transfection vector, any
form of safer preconditioning of the patient, and the
genetic background of the transplanted BM will
significantly improve the one proposed by Voltarelly
et al. because efficient negative selection will be rees-
tablished along with central (and possibly also periph-
eral) tolerance.

The prevalent belief that beta-cell mass is fixed by
adulthood and that all adult beta cells are fully
differentiated is now being reexamined in light of
recent studies showing a regenerative capacity, albeit
low, of pancreatic islets of Langerhans during T1D
progression. These studies suggest that, although the
physiological state of islet cells tends towards a fully
differentiated phenotype, the lack of autoimmune
aggression, together with the ‘danger’ signals generated
by massive beta-cell destruction may trigger processes
inside progenitors (whether islet-resident or ductal
epithelium-resident) that result in some degree of islet
cell regeneration (14, 23-26).

Immunomodulation: current state-of-the-art
in the clinic

In general, immunomodulation aims at reestablishing
central and/or peripheral tolerance to self. The reestab-
lishment of tolerance can include the deletion of
autoreactive immune cells, the attenuation of the
activity of autoreactive immune cells (T-cell anergy),
the generation/augmentation in vivo of immunosup-
pressive cells that can be antigen-specific (T-regulatory
cells). Many experimental immunomodulatory inter-
ventions have been carried out preclinically in the NOD
mouse model and almost all involve treatment of young
mice ‘prior’ to the clinical onset of hyperglycemia. An
insightful article by Atkinson and Leiter was instru-
mental in illustrating the plethora of specific (and
sometimes even quite unorthodox) approaches by
which diabetes onset was delayed or prevented in this
model (27).

As of yet, only one of these methods has shown any
significant clinical efficacy. This is the use of a human-
ized anti-CD3 antibody [TRX-4 (28); and hOKT3g
(Ala-Ala) (29)], which can reverse new-onset disease,
although for a limited amount of time (30-32).

The manipulation of T-cell responses by autoanti-
gen-derived peptides has been another approach used
to attenuate autoimmunity with demonstrated efficacy
in rodent models of T1D including the NOD mouse
(33-36). The majority of pathogenic CD8+ T-cell
clones isolated from pancreata of diabetic NOD mice
react specifically with the 9-23 peptide of the insulin B
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chain, while approximately 87% of the CD8+ T cells
in the islets of young NOD mice are reactive to the
15-23 region of the same B chain (37-43). Similarly,
the majority of TID patients exhibit CD8+ T-cell
responses to the 9-23 peptide. Indeed, an altered peptide
ligand has been synthesized along these lines (NBI-6024;
Neurocrine Biosciences, San Diego, CA, USA) and is
currently in phase II studies to see if it can prevent or
reverse new-onset disease as a possible vaccine (44, 45).

In addition to the insulin-based peptide, other putative
autoantigen-derived peptides exhibit immunoregula-
tory capacity (46-51) including an Hsp-60-derived pep-
tide (DiaPep277; DeveloGen Inc., Goettingen, Germany)
whose most appealing property is its apparent safety.
Although laboratory studies suggest that DiaPep277
does not act as an altered peptide ligand, there are no
firmly compelling data that it may not act as such in
a restricted set of T cells that are critical to the
progression, or the attenuation, of diabetes (52-59). A
number of similar agents are based on peptides derived
from other putative autoantigens such as GADG65, for
example, the recombinant alum formulated GADG65
(Diamyd, Stockholm, Germany) in phase III trials with
Diamyd Medical AB (60).

Clinical reversal of hyperglycemia achieved by anti-
CD3 antibody administration, still poses some ques-
tions relative to the mechanism of action in the
transient immunodepletion and associated cytokine-
related side effects (61, 62). Also, despite the initial
observations of improved C-peptide levels in adult
diabetics with evidence of T1D-related autoantibod-
ies, administration of DiaPep277 into new-onset T1D
children failed to exhibit any benefit compared with
controls (53, 56). Both agents (anti-CD3 antibody and
DiaPep277) appear to share one potential immuno-
regulatory mechanism: augmentation of the number
of regulatory CD4+ CD25+ T cells expressing the
Foxp3 transcription factor. It is now generally ac-
cepted that these Foxp3+ regulatory T cells are
critical for maintenance of tolerance (63-67). In vivo,
the activity of these cells appears to be regulated by
DC (68, 69).

The first clinically adapted
immunoregulatory cell therapeutic: diabetes-
suppressive autologous DC

DC are the body’s sentinels largely responsible for host
surveillance against microenvironmental anomalies
including pathogen invasion, infection, and damaged
tissue architecture, while coordinating the mechanisms
of self-tolerance (70-74). DC continuously traffic
throughout all body tissues’ sampling molecules from
their surroundings, where it is believed they maintain
potentially autoreactive immune cells in quiescence
either directly or via indirect regulatory immune cell
networks (75-82). When DC encounter local disrup-
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tion of tissue architecture and clevated proinflam-
matory signals from infected cells, DC undergo
‘maturation’ through a series of internal changes. While
conceptually thought of as a series of discrete check-
point-like events, maturation is rapid and often non-
linear (63, 83, 84). Concurrent with maturation, DC
migrate away from the site of ‘danger’ and into the
anatomically closest lymph nodes. Within the lymph
node, the DC, as a powerful APC, initially interacts —
using its class I or class I MHC/peptide complex — with
the TCR present on a naive T cell. This will constitute
the so-called “first signal’ for T-cell activation. To bring
a T cell to full activation, however, a subsequent
contact between co-receptors is necessary. Co-stimula-
tory molecules are so-called because they are present
on the APC (e.g., CD80/CD86 or CD40), with their
counterparts on the T cell (i.e., CD28 and CD40 ligand,
respectively), that, by interacting, further stabilize the
signal for activation between the two cells, thus
providing the ‘second signal’.

Absence of co-stimulatory molecule binding and
consequently lack of secondary signal generation has
been shown to lead to impaired activation of the
responding T cell, eventually bringing it to functional
anergy or apoptosis. This is indeed the outcome of
many immunosuppressive strategies aimed at co-
stimulation blockade (85-90).

Many lines of investigation support the concept that
DC in a functionally immature state (characterized by
low to absent co-stimulation) are powerful agents of
immune hyporesponsiveness (80, 82, 91-95). Exoge-
nous administration of functionally immature DC
achieves long-term and stable allograft survival in
a variety of mouse and rat models and prevents
a number of autoimmune diseases (96-103). Mecha-
nistically, functionally immature DC act by inducing
anergy either via direct cell contact and/or cytokines
(104-106) and, as described more recently, by up-
regulating the number and function of regulatory
immune cell subsets, especially CD4+ CD25+ Foxp3+
T cells (Treg) and a class of CD8+ immunosuppressive
T cells (106-114).

We have shown that in vitro administration of
Nuclear Factor-KappaB (NFkB) decoys to DC as well
as direct targeting of CD40, CD80, and CD86 with
antisense oligodeoxyribonucleotides (AS-ODN), reduce
co-stimulatory molecule levels producing functionally
immature DC capable of preventing or reversing new-
onset diabetes in the NOD mouse (115-117). This was
accomplished while maintaining T-cell responsiveness
to alloantigens in animals that received repeated
injections of modified DC. Co-stimulatory-depleted
DC also augmented the number of Treg that were
CD4+ CD25+ Foxp3+ through short-range interleu-
kin-7 signaling (115).

Numerous clinical trails have safely used DC-based
treatments for cancer therapy providing the basis for

7



Giannoukakis et al.

clinical adaptation of DC administration for T1D
treatment. A National Institutes of Health-funded pro-
tocol approved by the Food and Drug Administration
(FDA) is currently underway in phase I clinical trial with
an adult (18 yr or older) cohort documented with
insulin-requiring T1D of at least 5-yr duration. Leuko-
cytes are obtained from the patient by apheresis and
DC are generated in vitro and engineered in Good
Manufacturing Practice (GMP) facilities with the addi-
tion of AS-ODN. These DC, which express low levels of
CD40, 80 and CDS86 are injected into the patient by
intradermal administration at an anatomical site proxi-
mal to the pancreas (Fig. 2) (118). DC will migrate to the
nearest lymph nodes where they will start to interrupt the
vicious circle that maintains islet-specific inflammation,
i.e., insulitis. This therapeutic approach should be more
successful when DC injections start close to the clinical
onset of the disease. In the pancreas, DC acquire beta-
cell-specific antigens from apoptotic cells, leading to the
eventual display of these antigens to T cells in the
pancreas-draining lymph nodes. The lack of co-stimula-
tory molecules will result in an anergizing signal to the T
cells, induce regulatory immune cells (like Foxp3+ Treg),
and interrupt the T-cell-mediated anti-beta-cell epitope
spreading phenomenon. The abrogation of the autoim-
mune diabetogenic insult should be sufficient to promote
rescue of still present insulin-producing beta cells and/or
neogenesis of other insulin-producing cells in the host
endocrine pancreas, even after the onset of the disease.
This trial is underway at the time of this writing and once
safety has been demonstrated, a phase 11 efficacy trial will
start, involving new-onset diabetic patients.

NIH-funded, IRB- and FDA-approved

Beyond autologous DC: a diabetes-
suppressive microsphere vaccine

In spite of the promise of this study, we have
encountered cumbersome logistical requirements to
generate these diabetes-suppressive DC, which may
limit the future enrollment of new-onset diabetic
children in the efficacy phase of the trial. Leukopheresis
takes 2 or 3 h to provide sufficient precursor cells to
generate the number of DC necessary for six to eight
injections. The obtained DC should be exposed to AS-
ODN in GMP facilities in which the laboratory
practices are frequently difficult to reproduce. GMP
facilities are frequently located far away from the clinic
where the patients are treated. Many DC are lost during
the freezing/thawing procedures.

In an effort to avoid these steps, we have been
concurrently pursuing an alternative method to stabi-
lize DC immaturity directly in vivo using microparticle
carriers of immunomodulating agents like AS-ODN.

Many studies confirm that microparticle carriers can
direct DC to the administration site and once phago-
cytosed, the contents can shape the DC functional
phenotype (119, 120). We have incorporated the AS-
ODN directed against CD40, CD80 and CDS86 into
Baxter Healthcare’s PROMAXX® microsphere deliv-
ery system. The inert PROMAXX microsphere tech-
nology has been shown to be safe and effective in
human trials (121). More importantly, when adminis-
tered in vivo, this technology is neutral with respect to
DC maturation state compared with the known
immunostimulatory properties of other microsphere

Study

To confirm that intradermal administration of autologous diabetes suppressive
dendritic cells (DC) is safe, non-toxic and without side-effects.

1. Obtain leukocytes via apheresis —\

2. Engineer DC towards a “diabetes-suppressive”

C&

pacity under GMP/GLP conditions; provide

mixture of AS-ODN (CD40/CD80/CD86)

Fig. 2. Living dendritic cells (DC)-based clinical trial for type 1 diabetes. Schematic of the procedures involved in the phase I clinical trial
currently underway at the University of Pittsburgh to prove the safety of the living DC-based vaccine [used by permission of Cell Science

Reviews, Giannoukakis et al. (118)].

8

Pediatric Diabetes 2008: 9 (Part Il): 4-13



formulations. In other words, other polyplex formula-
tions have an inherent capacity to induce the upregu-
lation of co-stimulatory proteins at the DC surface
(possibly via Toll-like receptors), whereas the PRO-
MAXX technology does not. This neutrality on DC
maturation is a critical criterion in adapting micro-
sphere chemistry for immunosuppressive objectives
where DC are involved as mediators. Our very recently
developed PROMAXX antisense-formulated vaccine
rendered DC diabetes suppressive and newer data show
that it can prevent and reverse new-onset autoimmune
diabetes in the NOD mouse model (122). This recent
study was aimed at ascertaining the efficacy of AS-
ODN-formulated PROMAXX microspheres to pre-
vent T1D and to reverse new-onset disease. Micro-
spheres carrying AS-ODN to CD40, CD80 and CD86
were delivered into NOD mice. Glycemia was moni-
tored to determine disease prevention and reversal.
In recipients that remained and/or became diabetes
free, spleen and lymph node T cells were enriched to
determine the prevalence of Foxp3+ putative T-
regulatory cells. Splenocytes from diabetes-free micro-
sphere-treated recipients were adoptively cotransferred
with splenocytes from diabetic NOD mice into NOD-
SCID recipients. To rule out non-specific systemic
immunosuppression, splenocytes from successfully
treated recipients were pulsed with beta-cell antigen,
ovalbumin or cocultured with allogeneic splenocytes.
The microspheres prevented T1D and, most impor-
tantly, exhibited a capacity to reverse clinical hyper-
glycemia, suggesting reversal of new-onset disease. The
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microspheres augmented Foxp3™* T-regulatory cells,
induced hyporesponsiveness to NOD-derived pancre-
atic beta-cell antigen, without compromising global
immune response to alloantigens and nominal antigens.
T cells from successfully treated mice suppressed
adoptive transfer of disease by diabetogenic spleno-
cytes into secondary immunodeficient NOD-scid
recipients. Finally, microspheres accumulated within
the pancreas and the spleen. Live animal in vivo imag-
ing measured the microsphere accumulation pattern
(Fig. 3). DC from the spleen of the microsphere-
treated mice exhibit decreased cell surface CD40,
CDS80, and CD&86. This novel microsphere formula-
tion represents the first diabetes-suppressive and
reversing nucleic acid vaccine that confers an immu-
noregulatory phenotype to endogenous DC (122). We
predict that once all preclinical studies are com-
pleted, a phase I/II trial can be initiated (Fig. 4). The
microspheres are simple to manufacture to clinical
grade on a large scale and do not involve the
cumbersome logistics outlined earlier that are neces-
sary for the DC-based therapy.

Although we have focused on autoimmune diabetes as
a disease target throughout our studies, our microsphere
technology can be readily and rapidly applied to pro-
ducing other immunosuppressive vaccines for other
autoimmune conditions in which nucleotides along with
disease-specific antigens can be formulated to target the
transcripts of other critical molecules involved in im-
munoregulation inside endogenous DC without affect-
ing their maturation status in vivo.
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Fig. 3. In vivo accumulation of antisense-oligonucleotide-formulated microspheres (AS-MSP). (A) Alive non-obese diabetic (NOD) mice
received a subcutaneous injection containing sterile phosphate buffered saline (control, CN) or fluorescent microspheres with 50 pg of AS-
MSP (AS). Three hours postinjection, the spheres accumulated in the area of the pancreas and spleen. (B) Pancreas and spleen removed at 3,
24, and 48 h postinjection are shown to contain the fluorescently labeled microspheres [used by permission of Diabetes, Phillips ez al. (122)].
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PROMAXX™-formulated antisense-oligonucleotide (AS-ODN)
diabetes-suppressive vaccine

Fig. 4. Antisense-oligonucleotide-formulated microsphere-based clinical trial. Once compared with the procedures involved in the current
clinical trial (see Fig. 2), it is evident how the use of the AS-MSP simplifies the logistics while guaranteeing the same immunologic result.

Conclusion

In the past 20 years, benchside research has made many
promises to ‘cure’ T1D. Only recently has it been
possible to clinically implement a limited number of
benchside successes. This has been primarily because of
the reluctance of clinicians to intervene in a disease
where a therapeutic ‘gold standard’ in the form of
insulin replacement is considered by many to be
sufficient to guarantee an almost normal life for many
diabetics. The persistent presence of complications in
almost all type 1 diabetics, despite insulin replacement,
forced us to conclude that insulin is not a real cure. With
this knowledge, it has become easier to consider
immunotherapies aimed at preventing and perhaps
reversing T1D. Also, data from clinical trials from other
antibody- and cell-based therapies for other diseases
(e.g., cancer and rheumatoid arthritis) have paved the
way for cell-based immunotherapy to enter routine
clinical practice. For T1D, these other trials have
uncovered critical reference points (e.g., biochemical,
physiologic and immunologic profiles) for the clinician
to monitor safety and immune activity in vivo. Such key
reference points and safety measurements have encour-
aged us to adapt autologous DC therapy to reverse new-
onset T1D. In the near future, we envision trials with the
microsphere vaccine. Whether the autologous diabetes-
suppressive DC or the microsphere vaccine will prove to
be ‘cures’ awaits demonstration of safety, proven
lowering of insulin requirements with evidence of C-
peptide level amelioration, considered to be physiologic
and pharmacologic markers of preservation of residual
beta-cell mass and/or possible regeneration. At the

10

same time, as basic research identifies novel molecular
pathways of immunoregulation, more such cell- and
particle-based therapies will become acceptable for
clinical consideration.
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